8 research outputs found

    Lipidomic identification of plasma lipids associated with pain behaviour and pathology in a mouse model of osteoarthritis

    Get PDF
    Š 2020, The Author(s). Introduction: Osteoarthritis (OA) is the most common form of joint disease, causing pain and disability. Previous studies have demonstrated the role of lipid mediators in OA pathogenesis. Objectives: To explore potential alterations in the plasma lipidomic profile in an established mouse model of OA, with a view to identification of potential biomarkers of pain and/or pathology. Methods: Pain behaviour was assessed following destabilisation of the medial meniscus (DMM) model of OA (n = 8 mice) and compared to sham controls (n = 7). Plasma and knee joints were collected at 16weeks post-surgery. Plasma samples were analysed using ultra-high performance liquid chromatography accurate mass high resolution mass spectrometry (UHPLC-HR-MS) to identify potential differences in the lipidome, using multivariate and univariate statistical analyses. Correlations between pain behaviour, joint pathology and levels of lipids were investigated. Results: 24 lipids, predominantly from the lipid classes of cholesterol esters (CE), fatty acids (FA), phosphatidylcholines (PC), N-acylethanolamines (NAE) and sphingomyelins (SM), were differentially expressed in DMM plasma compared to sham plasma. Six of these lipids which were increased in the DMM model were identified as CE(18:2), CE(20:4), CE(22:6), PC(18:0/18:2), PC(38:7) and SM(d34:1). CEs were positively correlated with pain behaviour and all six lipid species were positively correlated with cartilage damage. Pathways shown to be involved in altered lipid homeostasis in OA were steroid biosynthesis and sphingolipid metabolism. Conclusion: We identify plasma lipid species associated with pain and/or pathology in a DMM model of OA

    Anxiety enhances pain in a model of osteoarthritis and is associated with altered endogenous opioid function and reduced opioid analgesia

    Get PDF
    Introduction: Negative affect, including anxiety and depression, is prevalent in chronic pain states such as osteoarthritis (OA) and associated with greater use of opioid analgesics, potentially contributing to present and future opioid crises.Objectives: We tested the hypothesis that the interaction between anxiety, chronic pain, and opioid use results from altered endogenous opioid function.Methods: A genetic model of negative affect, the Wistar–Kyoto (WKY) rat, was combined with intra-articular injection of monosodium iodoacetate (MIA; 1 mg) to mimic clinical presentation. Effects of systemic morphine (0.5–3.5 mg·kg−1) on pain behaviour and spinal nociceptive neuronal activity were compared in WKY and normo-anxiety Wistar rats 3 weeks after MIA injection. Endogenous opioid function was probed by the blockade of opioid receptors (0.1–1 mg·kg−1 systemic naloxone), quantification of plasma β-endorphin, and expression and phosphorylation of spinal mu-opioid receptor (MOR).Results: Monosodium iodoacetate–treated WKY rats had enhanced OA-like pain, blunted morphine-induced analgesia, and greater mechanical hypersensitivity following systemic naloxone, compared with Wistar rats, and elevated plasma β-endorphin levels compared with saline-treated WKY controls. Increased MOR phosphorylation at the master site (serine residue 375) in the spinal cord dorsal horn of WKY rats with OA-like pain (P = 0.0312) indicated greater MOR desensitization.Conclusions: Reduced clinical analgesic efficacy of morphine was recapitulated in a model of high anxiety and OA-like pain, in which endogenous opioid tone was altered, and MOR function attenuated, in the absence of previous exogenous opioid ligand exposure. These findings shed new light on the mechanisms underlying the increased opioid analgesic use in high anxiety patients with chronic pain

    Clinical and Preclinical Evidence for Roles of Soluble Epoxide Hydrolase in Osteoarthritis Knee Pain

    Get PDF
    Objective: Chronic pain due to osteoarthritis (OA) is a major clinical problem, and existing analgesics often have limited beneficial effects and/or adverse effects, necessitating the development of novel therapies. Epoxyeicosatrienoic acids (EETs) are endogenous antiinflammatory mediators, rapidly metabolized by soluble epoxide hydrolase (EH) to dihydroxyeicosatrienoic acids (DHETs). We undertook this study to assess whether soluble EH–driven metabolism of EETs to DHETs plays a critical role in chronic joint pain associated with OA and provides a new target for treatment. Methods: Potential associations of chronic knee pain with single-nucleotide polymorphisms (SNPs) in the gene-encoding soluble EH and with circulating levels of EETs and DHETs were investigated in human subjects. A surgically induced murine model of OA was used to determine the effects of both acute and chronic selective inhibition of soluble EH by N-[1-(1-oxopropy)-4-piperidinyl]-N′-(trifluoromethoxy)phenyl]-urea (TPPU) on weight-bearing asymmetry, hind paw withdrawal thresholds, joint histology, and circulating concentrations of EETs and DHETs. Results: In human subjects with chronic knee pain, 3 pain measures were associated with SNPs of the soluble EH gene EPHX2, and in 2 separate cohorts of subjects, circulating levels of EETs and DHETs were also associated with 3 pain measures. In the murine OA model, systemic administration of TPPU both acutely and chronically reversed established pain behaviors and decreased circulating levels of 8,9-DHET and 14,15-DHET. EET levels were unchanged by TPPU administration. Conclusion: Our novel findings support a role of soluble EH in OA pain and suggest that inhibition of soluble EH and protection of endogenous EETs from catabolism represents a potential new therapeutic target for OA pain

    Refining surgical models of osteoarthritis in mice and rats alters pain phenotype but not joint pathology.

    No full text
    The relationship between osteoarthritis (OA) structural change and pain is complex. Surgical models of OA in rodents are often rapid in onset, limiting mechanistic utility and translational validity. We aimed to investigate the effect of refining surgical small rodent models of OA on both joint pathology and pain behaviour. Adult male C57BL/6 mice (n = 76, 10-11 weeks of age at time of surgery) underwent either traditional (transection of the medial meniscotibial ligament [MMTL]) or modified (MMTL left intact, transection of the coronary ligaments) DMM surgery, or sham surgery. Adult male Sprague Dawley rats (n = 76, weight 175-199g) underwent either modified meniscal transection (MMNX) surgery (transection of the medial meniscus whilst the medial collateral ligament is left intact) or sham surgery. Pain behaviours (weight bearing asymmetry [in mice and rats] and paw withdrawal thresholds [in rats]) were measured pre-surgery and weekly up to 16 weeks post-surgery. Post-mortem knee joints were scored for cartilage damage, synovitis, and osteophyte size. There was a significant increase in weight bearing asymmetry from 13 weeks following traditional, but not modified, DMM surgery when compared to sham operated mice. Both traditional and modified DMM surgery led to similar joint pathology. There was significant pain behaviour from 6 weeks following MMNX model compared to sham operated control rats. Synovitis was significant 4 weeks after MMNX surgery, whereas significant chondropathy was first evident 8 weeks post-surgery, compared to sham controls. Pain behaviour is not always present despite significant changes in medial tibial plateau cartilage damage and synovitis, reflecting the heterogeneity seen in human OA. The development of a slowly progressing surgical model of OA pain in the rat suggests that synovitis precedes pain behaviour and that chondropathy is evident later, providing the foundations for future mechanistic studies into the disease

    The impact of anxiety on chronic musculoskeletal pain and the role of astrocyte activation

    Get PDF
    Š 2018 International Association for the Study of Pain. Anxiety and depression are associated with increased pain responses in chronic pain states. The extent to which anxiety drives chronic pain, or vice versa, remains an important question that has implications for analgesic treatment strategies. Here, the effect of existing anxiety on future osteoarthritis (OA) pain was investigated, and potential mechanisms were studied in an animal model. Pressure pain detection thresholds, anxiety, and depression were assessed in people with (n = 130) or without (n = 100) painful knee OA. Separately, knee pain and anxiety scores were also measured twice over 12 months in 4730 individuals recruited from the general population. A preclinical investigation of a model of OA pain in normo-anxiety Sprague-Dawley (SD) and high-anxiety Wistar Kyoto (WKY) rats assessed underlying neurobiological mechanisms. Higher anxiety, independently from depression, was associated with significantly lower pressure pain detection thresholds at sites local to (P < 0.01) and distant from (P < 0.05) the painful knee in patients with OA. Separately, high anxiety scores predicted increased risk of knee pain onset in 3274 originally pain-free people over the 1-year period (odds ratio = 1.71; 95% confidence interval = 1.25-2.34, P < 0.00083). Similarly, WKY rats developed significantly lower ipsilateral and contralateral hind paw withdrawal thresholds in the monosodium iodoacetate model of OA pain, compared with SD rats (P = 0.0005). Linear regressions revealed that baseline anxiety-like behaviour was predictive of lowered paw withdrawal thresholds in WKY rats, mirroring the human data. This augmented pain phenotype was significantly associated with increased glial fibrillary acidic protein immunofluorescence in pain-associated brain regions, identifying supraspinal astrocyte activation as a significant mechanism underlying anxiety-augmented pain behaviour

    References

    No full text
    corecore